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ABSTRACT

Internet security systems like intrusion detection and intru-
sion prevention systems are based on a simple input-output
principle: they receive a high-bandwidth stream of input
data and produce summaries of suspicious events. This sim-
ple model has serious drawbacks, including the inability to
attach context to security alerts, a lack of detailed histori-
cal information for anomaly detection baselines, and a lack
of detailed forensics information. Together these problems
highlight a need for fine-grained security data in the short-
term, and coarse-grained security data in the long-term. To
address these limitations we propose resource-aware multi-
format security data storage. Our approach is to develop
an architecture for recording different granularities of secu-
rity data simultaneously. To explore this idea we present
a novel framework for analyzing security data as a spec-
trum of information and a set of algorithms for collecting
and storing multi-format data. We construct a prototype
system and deploy it on darknets at academic, Fortune 100
enterprise, and ISP networks. We demonstrate how a hy-
brid algorithm that provides guarantees on time and space
satisfies the short and long-term goals across a four month
deployment period and during a series of large-scale denial
of service attacks.
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1. INTRODUCTION

The amount of malicious activity on the Internet has grown
dramatically over the past few years. Some indicators of this
alarming trend include the stream of critical patches for ma-
jor operating systems and applications, frequent zero-day
exploits, and widespread DDoS extortion. To counter the
threat, enterprises, governments, and users have deployed
detection, monitoring, and prevention systems like IDS’s,
IPS’s, anti-virus programs, and firewalls.

These systems typically operate on a simple input-output
principle. They receive a high-bandwidth stream of input
data and produce high-level summaries of suspicious events.
For example, an IDS such as Snort [10] or Bro [8] observes
packets on a network link and produces high-level alerts
based on violations of static or behavioral signatures.
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This simple input-output model has serious limitations.
First, the high-level alerts generated by security systems like
IDS’s lack context. That is, alerts typically provide infor-
mation about the specific vulnerability exploited, but no
information about the actions that preceded or followed the
exploit (e.g., Did the attacker perform any reconnaissance
before attacking the system? What did the attacker do to
the compromised system after the exploit?). Another serious
limitation with systems that only store data abstractions is
that some detection systems require a long-term baseline to
perform anomaly detection. Without fine-grained historical
information it is much harder to predict the future with past
information. Finally, event reports are often inadequate for
detailed computer forensics work. More information is of-
ten required to track an intruder through the network, and
recent regulations regarding data retention have established
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Together these problems highlight two critical limitations
with current network security systems, a lack of low-level,
fine-grained security data in the short-term, and a lack of
high-level, coarse-grained security data in the long-term. To
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address these limitations we propose a new model of network
security data storage: resource-aware multi-format security
data storage. The idea is to leverage the decreasing cost
of storage to record different abstractions of the same in-
put data stream. Thus, an IDS might store every packet
it observes for a few days, every flow it observes for a few
months, and events and aggregates for a few years. In this
way the system provides complete information in the short-
term, detailed information in the medium-term, and high-
level information in the long-term.

Modifying existing network security systems to take ad-
vantage of this new data storage approach requires two basic
steps. First, systems must choose which of many possible
data abstractions to record. For example, should a system
record full packets, network flows, counters, coarse-grained
events, or alerts? The second modification step is to de-
velop a storage allocation system. Newer network security
data is generally more useful than older network security
data, so old data is typically discarded to make room for
new data (i.e., a drop-tail approach). A multi-format sys-
tem must extend the idea to allocate finite storage resources
between multiple streams of input data. For example, if a
system records packet data and flow data, how does that
system decide how much of a finite storage pool to allocate
to packet data and how much to allocate to flow data? Said
another way, when storage resources are exhausted, a de-
cision must be made about what data format to delete to
make room for new data.

We approach the first problem by presenting a novel frame-
work for analyzing security data as a spectrum of informa-
tion content and storage requirements. We use this analysis
to choose distinct points along the spectrum and to design
a prototype implementation. We approach the second prob-
lem by proposing two methods for capturing multi-format
data and three algorithms for partitioning storage resources
between the different formats. We describe the dynamic
transformation and concurrent capture approaches for col-
lecting multi-format data and the fized-storage, the fized-
time, and the hybrid algorithms for allocating storage re-
sources. These algorithms are based around two important
metrics: time and space; that is, the time between the first
sample and last sample for each data format, and the num-
ber of bytes of storage each data format requires.

We construct a prototype multi-format data storage sys-
tem based on these ideas and deploy the system on three
diverse networks during the first four months of 2006. The
deployments are located in a large academic network, inside
the border of a Fortune 100 enterprise network, and in a
regional ISP network. We present a preliminary evaluation
based on these deployments and on tests of the system under
simulated denial of service attacks. The idea is to evaluate
how the system performs in a real-world setting and under
a highly stressful condition.

We show that while no algorithm is perfect, the hybrid
algorithm with the concurrent capture system appears to
make the best set of tradeoffs. This combination satisfies the
short-term and long-term goals while also guaranteeing some
amount of data in all formats for detection systems during
intensive attacks. Finally, we conclude with a discussion of
the approach and future research directions such as adding
a predictive capability.

2. BACKGROUND AND RELATED WORK

Network-based intrusion detection and prevention systems
are now common on most academic, enterprise, and govern-
ment networks. These systems analyze streams of packets
or flows to identify anomalous behavior or suspicious activ-
ity using signatures. However, monitoring high data-rate
network streams can be extremely resource intensive. Al-
though storage and computational costs have dropped pre-
cipitously, archiving and processing fine-grained information
on every packet on the network for long periods is currently
impractical. For example, a campus router in our academic
networks observes an average of 300Mb/s of traffic. If we
were to record every packet for a year that would require
about 1.1 petabytes of storage. Trying to store and process
this volume of traffic at every detection point in the network
would be massively expensive.

To reduce resource costs, existing systems have applied
techniques that fall under two broad classes: sampling, and
data aggregation. The sampling approach reduces computa-
tional and storage complexity by processing or storing only
a subset of the members in a given data stream. The items
chosen are kept in the same format as the input set. That
is, if a stream of packets is sampled the result will also be a
stream of packets. Another approach is data aggregation in
which an input data stream is transformed into an output
stream with a different format that is typically less storage
and computationally expensive. For example, a NetFlow
collector takes raw packets as input and produces network
flows as output [6]. Research into these two methods of
achieving scalability has resulted in important advances:

Sampling: Network measurement at high volume routers
and switches for security, billing, and management can be
extremely resource intensive. In order to avoid overloading
router CPUs, collection systems, and detection systems in-
coming packets and flows are often sampled [9, 6]. This is
typically achieved by processing only 1 in N packets or 1 in
N flows. 1in N sampling can significantly reduce the packet
and flow rate, however, critical information and events can
be lost due to sampling. For example, the distribution of
flow size over time is heavy-tailed leading to an underesti-
mation of total transfer sizes [4].

To achieve better reliability and capture more fine-grained
information, several intelligent sampling approaches have
been proposed. Duffield et al. proposed a proportional
smart sampling approach and an architecture for collect-
ing sampled flow data inside a large ISP network [3]. Es-
tan et al. proposed a new adaptive sampling approach that
limits router memory and CPU requirements by adaptively
changing the sampling rate based on the observed traffic [5].

Data Aggregation: A second major approach to achiev-
ing scalability is to store specific events or summaries of
raw data. These summaries can include fine-grained infor-
mation like timestamps, source and destination addresses,
or more coarse-grained information like the severity of the
event and even possible mitigation strategies. For exam-
ple, NetFlow is fine-grained summarization of packet-level
data and IDS/IPS events are coarse-grained summarization
of signature matches or behavioral abnormalities. The key
idea is that scalability is achieved by using semantic knowl-
edge of lower-level data formats to generate higher-level ab-
stractions of the same data.
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Figure 1: Network security data abstractions spectrum.

Sampling and data aggregation are complementary tech-
niques and many detection systems use both methods to
achieve scalability. However, detection systems today typ-
ically use and produce only one data abstraction. For ex-
ample, an IDS might take full packets as an input and pro-
duce events as an output. Similarly, a DoS detection system
might take NetFlow as input and produce events as output.
This means forensics investigators are limited to the infor-
mation provided in an event or a single data abstraction to
pursue their investigation.

3. MULTI-FORMAT STORAGE

To provide fine-grained information in the short-term and
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coarse-grained information in the long-term, we propose resource- Figure 2: Network security data format hierarchy.

aware multi-format storage. Our approach is to develop a
technique for scalably recording different granularities of se-
curity data simultaneously. To accomplish the goal of keep-
ing both short-term and long-term data, we propose that
a multi-format storage system should store security data
in many different formats. In this section we explore the
range of network security data summarization and abstrac-
tion methods and the utility each provides for detection,
forensics, and trending.

At the lowest level are packets. Packets provide the most
complete source of information available to most network
security devices. Full packets include complete headers and
payloads which enable important network security opera-
tions like differentiating specific application-level protocols
like HTTP. However, storing full packets is also extremely
resource intensive.

To reduce the cost of storing and processing full packets,
data can be summarized into different abstractions such as
flows or events. The key idea is that each of these sum-
maries trade off information for lower resource cost. We
propose that these tradeoffs can be illustrated as a spec-
trum as shown in Figure 1. Full packets that provide the
most information and require the most resources are shown
on the left, and event summaries that require the least re-
sources but provide the least information are shown on the
right (note that certain systems may produce more detailed
event summaries that would be placed closer to left of the
spectrum).

The important implication of Figure 1 is that there are
many different data abstractions, and while it is hard to

quantitatively compare them, each abstraction provides uniquely

important information useful for forensics and alerting. Sev-
eral points along the data abstraction spectrum are partic-
ular common today. Packets are used as the input to many
IPS and IDS systems such as Snort and Bro, flows are used
as the input to large-scale systems such as DoS detectors,
and events and alerts are produced by detection and miti-
gation systems. These three abstractions provide excellent
coverage of the complete data abstraction spectrum.

One-way data transforms can be performed between
lower and higher levels in the hierarchy.

The information and storage relationship between the dif-
ferent formats can also be visualized as a pyramid as shown
in Figure 2. The key idea is that formats lower in the pyra-
mid can be transformed into formats higher in the pyramid.
For example, there is some function that takes packets as
input and transforms them into flows. Clearly these trans-
formation functions are one-way, as information is lost in the
process e.g., raw packets cannot be accurately reconstructed
from flow data.

The implication of this analysis is that there are many
points on the data format spectrum that provide unique
resource and information tradeoffs and specific detection,
forensics, and trending value. Furthermore, there are a set
of one-way transformation functions that provide the ca-
pability to convert more fine-grained data formats such as
packets into more coarse-grained formats such as flows.

4. STORAGE ALLOCATION

The second major component needed to convert existing
network security systems into multi-format storage systems
is a storage allocation system. Existing network security sys-
tems record data at a higher abstraction level and thus do
not worry about storage resources. Newer data is generally
more useful than older data in network security so old data
is discarded to make room for new data (i.e., a drop-tail ap-
proach). This approach is inadequate for multi-format data
storage. The problem is that a finite storage resource must
be allocated to multiple streams of input data. For example,
if a system records packet data and flow data, how does that
system decide how much of a finite storage pool to allocate
to packet data and how much to allocate to flow data. Said
another way, when storage resources are exhausted, data
from which format should be deleted.

We now present three algorithms for allocating finite stor-
age resources and two methods of capturing the incoming
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Figure 3: Multi-format storage allocation algo-

rithms.

data in multiple formats. The algorithms are based around
two important metrics: time and space; that is, the time
between the first sample and the last sample for each data
format, and the number of bytes of storage each data format
requires.

4.1 Storage Allocation Algorithms

The development of a storage allocation algorithm re-
quires a method of assigning priority to data formats. When
storage resources become scarce, a decision must be made
about what lower-priority data to delete. We now present
two high-level objectives that we use to help develop priority
enforcement algorithms.

The first goal is to guarantee some data will exist over a
long period. To keep some a higher level abstractions over
months or years. This long-term data is useful for satisfying
data retention requirements, trending, and other long-term
analysis and characterization. The second goal is to guar-
antee that detailed data will exist for at least a short period
such as a few days or weeks. Highly detailed data provides
essential forensic details about the outbreak of new threats
and details during an intrusion investigation.

We now describe three algorithms for allocating storage
resources based on these two goals: the fixed-storage, fixed-
time, and hybrid algorithms (illustrated in Figure 3). To
explore these algorithms we model a system that captures
packet data, flow data, and counter aggregate data.

4.1.1 Fixed Storage

The fixed-storage algorithm is based on the idea that each
data format should be allocated a fixed proportion of the to-
tal available storage. For example, a system might allocate
50% of the available space for packet storage, 35% for flow
storage, and 15% for counter aggregates. In this way, each
data format is independent, and an overflow in one format
doesn’t impact the allocations of other formats. When the
data in a given format exceeds the space available in a par-
tition, the oldest data in that format is deleted so that new
data can fit. The problem with this scheme is that there is
no way to guarantee how long data in a given format will
be available. For example, the partition for network flows
might be allocated 35% of the total storage but there is no
simple way to know the amount of time that the flow data
will cover. That is, how many hours, minutes, days, etc. of
flow data will be available for forensics investigations.

4.1.2 Fixed Time

The fixed-time algorithm takes the opposite approach,
and provides guarantees on the length of time that a given
data format will exist. Fach data format is assigned a unique

priority and a time range over which the format is guaran-
teed to cover. For example, counter aggregate data might
be assigned the highest priority and the algorithm config-
ured to keep counter aggregates for at most 5 years. Flow
data could then be assigned the next highest priority and
the algorithm configured to keep flows for at most 1 month.
Finally, packet data would be assigned the lowest priority
and the algorithm would allocate any storage not used by
counter aggregates or flows to packet data. The fixed-time
algorithm will then guarantee that if storage is available,
there will be 5 years of counter aggregates. Then, if there is
still storage left over, there will 1 month of flow data. In this
way, network security devices can prioritize certain formats
and make a best-effort attempt to store them over long pe-
riods of time without the chance that an extremely storage
intensive and bursty format like packet data will overwrite
them.

The main drawback of this algorithm is that low priority
data (like the packet data in our example) can be overwrit-
ten easily if the size of higher priority formats suddenly in-
creases. For example, a DoS attack can cause the number of
flows to increase to the point that packet data is completely
lost (which could hinder subsequent investigations).

4.1.3 Hybrid

The hybrid algorithm attempts to combine the best fea-
tures of the fixed-storage and fixed-time algorithms. The
key idea is to use the fixed-time algorithm when the size of
the format can be estimated and the fixed-storage algorithm
when it cannot accurately predicted. Thus, the hybrid algo-
rithm can guarantee some information will exist for a long
period of time and more fine-grained data formats will exist
when possible. For example, counter aggregates can be con-
structed in such a way as to accurately estimate the sample
rate and the size of each sample. Thus, counter aggregates
can reliably be assigned to cover a fixed time range (without
taking all the storage from other formats) and the remain-
ing space partitioned between flows and packets. Using this
scheme we can guarantee coarse-grained data will exist for
long period and fine-grained will exist for at least a short
time.

4.2 Data Capture

As raw data comes into a monitoring system, data ab-
stractions can be generated in one of two ways. First, higher-
level abstractions can be generated dynamically as a result of
transforms from lower-level abstractions. Second, they can
be constructed concurrently with lower-level abstractions.
We now detail each approach:

Dynamic Transformation: In this approach, data that
enters the system is recorded only in the lowest-level format.
As the lower-level format data ages, that data is transformed
dynamically into higher-level abstractions. For example,
packets are recorded as they enter the system. As that
packet data gets older, it is transformed into higher-level ab-
stractions. Those aggregates are subsequently transformed
into higher-level abstractions as they age. The advantage
of this approach is that storage requirements are reduced
because a given time period is stored only in a single data
abstraction. The cost of performing the transformation can
be distributed across time by pre-transforming and caching
the next time unit of data. Dependencies between samples
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can be reduced by restricting timeouts in protocols like Net-
Flow to the sample interval size.

Concurrent Capture: This method stores data in multi-
ple data abstractions simultaneously. For example, as pack-
ets enter the system, packets, flows, and counter aggregates
are generated and recorded simultaneously from the same
input packet stream. The advantage of this approach is
that recent data is available from different abstractions si-
multaneously. Therefore, alerting and forensics applications
will always have recent data.

5. EVALUATION

In this section we construct a prototype multi-format data
storage system and deploy it on three diverse networks. We
then evaluate the dynamic transformation and concurrent
capture approaches for collecting multi-format data and the
fized-storage, the fized-time, and hybrid algorithms for allo-
cating storage resources.

5.1 System Implementation

We constructed a prototype consisting of four daemons:
three for capturing data and one for managing storage re-
sources. The system was designed as four separate dae-
mons for reliability, scalability, and flexibility. Each capture
process is independent so a failure of one process does not
impact another. This redundancy helps ensure data avail-
ability under conditions like the outbreak of a new threat or
an attack.

The capture daemons include one program for record-
ing packets, one for recording flows, and one for recording
counter aggregates. The pcapture daemon stores packets,
the nfcapture daemon stores flows in NetFlow version 9
format, and the scapture daemon stores counter aggregates
at five different time resolutions. The input to each capture
daemon is raw packets or other lower-level data abstractions.
This enables the system to support both concurrent capture
and dynamic transformation. Finally, formatmgr, the stor-
age management daemon, is responsible for enforcing the
different storage management algorithms and transforming
and purging old data files.

pcapture: The pcapture daemon reads packets from a
network interface using the libpcap packet capture library
and stores each complete packet with link-level headers.
pcapture automatically rotates files each hour in order to
keep individual files from getting too large. pcapture output
files are compatible with tcpdump and other packet inspec-
tion tools.

nfcapture: The nfcapture daemon reads packets from a
network interface or pcapture file using the libpcap packet
capture library and aggregates them into flows uniquely
identified by the layer-3/4 connection 5-tuple. Flows are
stored according to Cisco’s NetFlow version 9 specification
which provides a flexible format that allows customized flow
storage fields. nfcapture stores the: source IP address,
source port, destination IP address, destination port, flow
start time, flow end time, protocol, total packets, total bytes,
and TCP flags in each flow record. Each flow record con-
sumes a total of 27 bytes. Flows are ordered by start time
and are written to hourly flow files. The flow output files
are compatible with existing flow tools that support Net-
Flow version 9.

Time-scale | Sample Rate Samples Average
Per Period | Bytes/Second
Hour 4 secs 900 24
Day 90 secs 960 1.067
Week 10 mins 1000 0.16
Month 45 mins 960 0.356
Year 9 hours 973 0.00296

Table 1: Counter aggregate samplers implemented
in scapture (96 bytes per sample).

scapture: The scapture daemon reads packets or flows and
counts the number of observed bytes, packets, and unique
source addresses observed. scapture builds these aggregates
in four bins: over all packets, over all TCP packets, over all
UDP packets, and over all ICMP packets. A 64-bit counter
is used for each data point, so a complete sample takes 96
bytes. The counter aggregates are meant for quick analy-
sis and trending so scapture stores counter aggregates to
enable analysis over 5 common time ranges: hourly, daily,
weekly, monthly, and yearly. Sample rates at each of these
time ranges were chosen to provide approximately 1000 data
points. 1000 data points is typically enough to produce high
fidelity graphs and to perform basic trending. A summary
of the different time scales and the corresponding data rates
(at 96 bytes/sample) are shown in Table 1.

formatmgr: The formatmgr daemon manages storage re-
sources between multiple data abstractions. In our sys-
tem it handles allocations for the pcapture, nfcapture, and
scapture daemons. formatmgr tracks the amount of space
used by each daemon and transforms or deletes old data files
to free up resources. The formatmgr daemon implements the
fixed-storage, fixed-time, and hybrid algorithms described in
the previous section. The daemon automatically adapts al-
locations as storage resources are removed and added. Thus,
if a new disk is added to the system, the formatmgr will de-
tect the disk and increase the amount of space allocated to
each storage format according to the partitioning algorithm.

5.2 Deployment and Evaluation Environment

To evaluate the prototype multi-format security data cap-
ture system, we deployed it on three large production net-
works and tested the system under simulated DoS attacks.
The idea was to evaluate how the system performed in a
real-world setting and under a highly stressful condition.

We deployed the system on three diverse networks dur-
ing the first four months of 2006. We monitored security
data feeds from three Internet Motion Sensor [1] darknet
sensors. Darknets monitor traffic to unused and unreach-
able addresses [7, 2]. The darknets we monitored were pas-
sive (i.e., did not actively respond to incoming packets) and
were located in a large academic network, inside the bor-
der of a Fortune 100 enterprise network, and in a regional
ISP network. The darknets covered approximately a /16
network (65 thousand addresses), a /8 network (16 million
addresses), and /8 network, respectively.

To provide a baseline for the subsequent analysis we mea-
sured the byte, packet, and flow rates at each of the de-
ployments. The top of Figure 4 shows the number of bytes,
packets, and flows observed at the three darknet deploy-
ments during March 2006. These graphs demonstrate the
huge differences in the relative quantities of data in differ-
ent formats.

The bottom of Figure 4 shows the storage resources re-
quired to store each data abstraction using the pcapture,
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Figure 4: (Top) Overall byte, packet, and flow rates observed at three darknet deployments during March
2006. Note the daily and weekly cyclical behavior at the enterprise darknet. (Bottom) Storage resources
required for storing different lengths of time in different with different data abstractions.

nfcapture, and scapture daemons for different periods of
time. The packet and flow rates were computed by averaging
the traffic rates over March 2006. These graphs demonstrate
the vast difference in storage requirements for different se-
curity sensors. For example, 100 GB of storage is enough to
store more than a year of packet data on the academic /16
darknet, but only enough to store one day of packet data on
the larger /8 ISP darknet.

We then used the traffic data that we observed during
the live deployment to generate a packet trace simulating
a high volume denial of service (DoS) attack. The baseline
traffic rate in the trace was fixed at the average traffic rate
observed at the /8 ISP darknet over March 2006. Next,
a series of five DoS attacks were injected into the packet
stream. These attacks increased the byte, packet, and flow
rate by ten times over the normal rate. The resulting packet
trace was then used to evaluate the dynamic transformation
and concurrent capture approaches.

5.3 Dynamic Transformation

In this subsection we evaluate the fixed-storage, fixed-
time, and hybrid algorithms using the dynamic transfor-
mation storage approach. Recall that the dynamic trans-
formation capture approach translates one data format into
another when a time or space allocation becomes full. For
example, when the storage allocated to packets becomes full,
older packets are automatically transformed into flows.

We started by replaying the simulated attack packet trace
and capturing it using the dynamic transformation system.
The results are shown in the top of Figure 5. Looking first
at the top of Figure 5(a), we find that the fixed-storage algo-
rithm was able to successfully keep results as packets, flows,
and aggregates. However, notice the dropout in time cov-
erage (the difference between the first and last data times-

tamp) with the packets and flows corresponding to the five
DoS attacks. In addition, notice how the time coverage of
the aggregates also spikes with the attacks as data is trans-
formed between formats more quickly. This unpredictability
makes this algorithm less desirable.

The top of Figure 5(b) show the results with the fixed-time
algorithm. The fixed-time algorithm was configured with
data format priorities consistent with our short-term and
long-term goals. That is, aggregates (long-term data) were
given the highest priority followed by packets (short-term
data) followed by flows (medium-term). The most critical
feature of the resulting graph is that we see no aggregates.
The reason is that packet and flows take all the available
space, starving the aggregates. This is a critical result be-
cause there is always the chance that a lower-priority for-
mat can be starved for resources, meaning that we won’t
record that format. This means we are not able to meet the
goal of having fine-grained information in the short-term
and coarse-grained over the long-term.

Because the hybrid algorithm is based on the fixed-time
algorithm, it also suffers from the same starvation problem
when data is dynamically transformed. These limitations
mean that there are very weak guarantees on the availablity
of more coarse-grained formats such as aggregates. Thus,
the dynamic transformation approach does not appear to
meet our goal of having fine-grained data in the short-term
and coarse-grained data in the long-term.

5.4 Concurrent Capture

In this subsection we analyze the utility of the fixed-
storage, fixed-time, and hybrid algorithms when data is cap-
tured and stored using the concurrent capture approach.
The concurrent capture approach differs from the dynamic
transformation approach because all data formats are recorded
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Figure 5: (Top) Performance of the fixed-storage and fixed-time allocation algorithms using the dynamic

transformation capture approach under a series of simulated DoS attacks.

(Bottom) Performance of the

fixed-storage, fixed-time, and hybrid allocation algorithms using the concurrent capture approach under the

same attacks.

simultaneously. For example, when a packet enters the sys-
tem it is recorded as a packet, a flow, and an aggregate
simultaneously

To evaluate the concurrent capture approach, we replayed
the simulated attack packet trace and recorded it using the
concurrent capture approach. The results are shown at the
bottom of Figure 5. Looking first at the fixed-storage algo-
rithm, the bottom of Figure 5(a) shows that some of each
format was captured with the fixed-storage algorithm. The
graph does show significant dropouts in both packet and
flows during each of the DoS events. However, because it is
a fixed-storage approach, we can guarantee some amount of
packet and flow data will be available during the attacks.

The bottom of Figure 5(b) shows the results for the fixed-
time algorithm. As with the dynamic transformation ap-
proach, the fixed-time algorithm was configured with data
format priorities consistent with our short-term and long-
term goals. That is, aggregates (long-term data) were given
the highest priority followed by packets (short-term data)
followed by flows (medium-term). The bottom of Figure 5(b)
shows that we were able to provide good guarantees for both
aggregates and packets. The only difficulty is that there are
periods during the attacks where no flow data is recorded.
This is potentially dangerous if a detection system using
data from our system operates only on flows. During the
period of the attacks the detection system would have no
flow data with which to generate alerts.

The hybrid algorithm provides both a long-term guaran-
tee for aggregate data and the guarantee that some packet
and flow data will exist. Moreover, because the data rate
of the aggregates is fixed (the bit-rate is constant), it does
not change when the system comes under attack, and we
can guarantee it will not cause storage starvation for other
data formats. The bottom of Figure 5(c) demonstrates how

the hybrid algorithm with the concurrent capture system is
able to provide long-term guarantees on coarse-grained ag-
gregates and guarantee some amount of short-term data in
both packet and flow formats. It provides both short-term
packet and flow data during each attack so detection systems
based on packets or flows can continue operating effectively.

While no algorithm is perfect, the hybrid algorithm with
the concurrent capture system appears to make the best
set of tradeoffs. This combination satisfies both our short
and long-term goals while also guaranteeing some amount
of data in all formats during intensive attacks.

5.5 Darknet Results

We deployed the concurrent capture system with the hy-
brid algorithm on the academic, enterprise, and ISP net-
works over four months during the beginning of 2006. To
evaluate the effectiveness of the system under conditions
with limited resources, we fixed the storage pool for the aca-
demic darknet at 1GB, the storage pool for the enterprise
darknet at 10GB, and the storage pool for the ISP darknet
at 100GB. The results are shown in Figure 6.

Figure 6 demonstrates that the proposed multi-format
storage system was able to meet our goal of providing fine-
grain information in the form of complete packets in the
short-term and a guaranteed amount of coarse-grained ag-
gregates in the long-term. However, there was also a high
degree of variability in the time coverage due to different
events. For example, drop in time coverage during February
2006 in Figure 6(c) is due to the emergence of a large amount
of extremely aggressive single-packet UDP Windows popup
spam. This variability also means that it is difficult predict
the availability a format like packets based on historical in-
formation.

Finally, we performed a preliminary evaluation of over-
all performance of the monitoring system and found that
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Figure 6: Deployment results using concurrent data capture and the hybrid allocation algorithm on three

darknets networks during the first four months of 2006.

the primary bottleneck was the storage system. Thus, while
there is additional overhead to storing multiple formats si-

multaneously, the amount of resources required to store packet

data vastly dominate other formats as shown in Figure 4.
Therefore, the overhead of storing multiple formats is di-
rectly related to the resource requirements of the most fine-
grained data format (in our case packets).

6. DISCUSSION AND FUTURE WORK

We have presented resource-aware multi-format security
data storage, a framework for archiving fine-grained security
data in the short-term, and coarse-grained security data in
the long-term. We demonstrated how security data formats
can be placed along a spectrum of information content and
resource cost. We then proposed three algorithms for collect-
ing and storing multi-format data. We deployed prototype
implementation of a multi-format storage system on three
darknets in an academic network, a Fortune 100 enterprise
network, and an ISP network. Finally, we demonstrated
how a hybrid algorithm that provides guarantees on time
and space satisfies the short and long-term goals across the
four month deployment period and during a series of large
scale denial of service attacks.

While the multi-format approach performed well, there
are still many open questions. For example, what is the
optimal method of configuring the time and size of the dif-
ferent allocations with the fixed-storage, fixed-time, and hy-
brid algorithms? Understanding what different data formats
should be captured, the typical data rate of those formats,
and how the stored information will be used are all critical
to approaching this problem.

Related to the partition sizing problem is the development
of some predictive capability. That is, it would be extremely
helpful if previous historical data could be used to predict
future data rates. Given the variability in data rates we
observed during the evaluation, this a difficult problem and
may depend heavily on the type of security data being mon-
itored.

Another important question is how the system scales to
more resource intensive applications like high-volume IDS’s.
It would be very helpful to understand how a multi-format
storage system performs with gigabits per second of input
traffic. Is the bottleneck recording data to persistent storage
or generating data abstractions? An evaluation on a live IDS
deploy would help to answer this question.

In all, the multi-format approach is very promising and
there are many interesting research questions remaining.
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